

5,7-DIHYDROXY-3,6,8-TRIMETHOXYFLAVONE FROM THE FLOWERS OF *GNAPHALIUM ELEGANS**

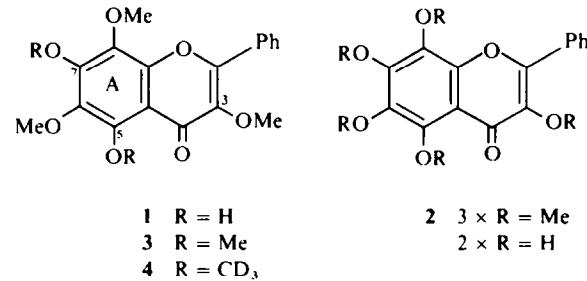
RUBEN DARIO TORRENEGRA,† SAUL ESCARRIA,† BERND RAFFELSBERGER,‡ and HANS ACHENBACH‡

† Departamento de Química, Universidad Javeriana, Bogotá, Colombia; ‡ Chemisches Laboratorium, Universität Freiburg, D-7800 Freiburg, West Germany

(Revised received 22 February 1980)

Key Word Index —*Gnaphalium elegans*; Compositae; 5,7-dihydroxy-3,6,8-trimethoxyflavone; Eu(fod)₃ shift reagent.

Abstract — 5,7-Dihydroxy-3,6,8-trimethoxyflavone was isolated from the flowers of *Gnaphalium elegans*. The structure elucidation is based mainly on proton resonance studies using Eu(fod)₃ shift reagent.


INTRODUCTION

As a part of our current work on the chemistry of some Colombian plants of the genus *Gnaphalium* [1, 2], we have now examined the flowers and leaves of *Gnaphalium elegans* H.B.K. This plant is widely distributed in the cold zone of the Bogotá plain (2500–2700 m altitude) and its surroundings. It is commonly used to remove inflammation of the prostate gland and it is claimed to possess anticancer activity [3].

RESULTS AND DISCUSSION

A new dihydroxytrimethoxyflavone **1** was isolated from petrol extracts of the flowers of *Gnaphalium elegans*. The elemental composition ($M^+ = 344.0898$: $C_{18}H_{16}O_7$) and spectral characteristics indicated that the isolated compound is a penta oxygenated flavone. Key fragments in the MS at m/e 105 (12%) and 77 (8%), as well as ¹H NMR signals for 5 protons with chemical shifts and a splitting pattern typical for a phenyl moiety, excluded any substitution at ring B of the flavone skeleton. Since the ¹H NMR spectrum exhibits signals for three OMe groups and two OH groups (at δ 12.51 and 6.50, exchangeable upon treatment with D_2O), the isolated flavone must have the basic structure **2**.

Upon methylation with methyl iodide the flavone was converted into its dimethyl ether **3**, a compound having mp 86° and spectral characteristics in agreement with the data described for 3,5,6,7,8-pentamethoxyflavone [4].

* Part 3 in the series "Colombian Plants of the Genus *Gnaphalium*". For Part 2 see ref. [2].

From the D_2O -exchangeable signal at δ 12.51 in the ¹H NMR spectrum and from the fact that treatment of the flavone with ethereal diazomethane produces only a monomethylated product [¹H NMR: δ 12.35 (1 H, br. s)], it was concluded that one of the two OH groups must be attached at C-5 and form a hydrogen bridge with the carbonyl group. However, the second OH group cannot be at C-3 because this would give 3,5-dihydroxy-6,7,8-trimethoxyflavone, a substance recently isolated from *Helichrysum* species [4, 5], which has physicochemical data (e.g. mp, MS) different from those of **1**. To deduce the position of the second OH group we prepared, in addition to **3**, the di-trideuteromethyl derivative **4** and recorded ¹H NMR spectra of **3** and **4** in the presence of Eu(fod)₃ [6].

From corresponding experiments on some polymethoxylated flavones it is known that there is only a very slight influence of the lanthanide shift reagent on a OMe group at C-3 [7], whereas the induced shifts of methoxy groups at ring A decrease in proportion to their distances from the chelating carbonyl carbon atom [7, 9].

The δ values observed for the OMe-signals in **3** and **4** are presented in Table 1 together with the corresponding published data for quercetin pentamethyl ether [3,5,7,3',4'-pentamethoxyflavone (**5**)] [7, 10] and ponkanetin [5,6,7,8,4'-pentamethoxyflavone (**6**)] [8, 9].

Thus these results clearly demonstrate, that the trideuteriomethylated flavone **4** has OCD₃ groups at C-5 and C-7 and therefore the flavone from *Gnaphalium elegans* must be 5,7-dihydroxy-3,6,8-trimethoxyflavone (**1**), a new natural product.

EXPERIMENTAL

Plant material of *Gnaphalium elegans* was collected in June 1976 and verified by the Herbario Nacional, Universidad Nacional de Colombia, where a herbarium specimen is deposited under No. 4.81.1820. The flowers (2.5 kg) were extracted with petrol (40–60°) and the conc. extract flocculated with MeOH to remove fats. The filtrate was chromatographed on Si gel using C₆H₆ as eluent. Upon removal of the solvent fractions 20–30 afforded 30 mg of **1**, which was recryst. from MeOH–CHCl₃ (9:1) to give orange needles, mp 170°. On TLC with C₆H₆–Me₂CO (9:1) **1** appeared red in UV light, and changed to yellow with I₂ vapour, yellow with

Table 1. ^1H NMR resonances (δ) of methoxyl groups of 3, 4, 5 and 6

Position of methoxyl group	^1H NMR resonances*							
	Without $\text{Eu}(\text{fod})_3$		With addition of $\text{Eu}(\text{fod})_3$					
	3	4	1 equiv.	2 equiv.	1 equiv.	2 equiv.	5†	6‡
3	3.87§	3.86§	4.8§	5.8§	4.8§	5.7§	4.7§	
5	3.96		20.6	22.0	—	—	18.0	17.18
6	3.94§	3.92§	11.2	16.0	10.3	16.1	—	10.37
7	4.09		6.5	9.4	—	—	5.2	5.75
8	3.98§	3.97§	4.7§	4.4§	4.5§	4.2§	—	4.40

* 250 MHz in CDCl_3 .

† Published data [7, 10].

‡ Published data [8, 9].

§ Assignments are tentative.

CoCl_2 and remained unchanged with NH_3 . FeCl_3 , Wilson's reagent and Mg/HCl tests were all positive. UV: λ_{max} nm (log ϵ) [MeOH]: 278 (4.50), 324 (4.07); [AlCl_3]: 293, 349; [$\text{AlCl}_3 + \text{HCl}$]: 293, 394; [NaOMe]: 284, 379; [NaOAc]: 283, 381; [H_3BO_3]: 278, 326; [$\text{NaOAc}/\text{H}_3\text{BO}_3$]: 278, 377. IR (KBr) cm^{-1} : 3300, 1620, 1540, 1360, 1145, 1010, 770, 745. ^1H NMR (Bruker WH 250, CDCl_3 , TMS): δ 12.51 ppm (1 H, s, exchangeable with D_2O), 8.15–8.08 (2 H, m), 7.60–7.50 (3 H, m), 6.40 (1 H, s, exchangeable with D_2O), 4.20 (3 H, s), 3.96 (3 H, s), 3.86 (3 H, s). MS (SM1B, 70 eV): $m/e > m/e 70$ (% > 10%) = 358 (67, M^+), 357 (12), 344 (22), 343 (100), 327 (10), 105 (ca 22), 77 (ca 19). $\text{M}^+ = \text{C}_{18}\text{H}_{16}\text{O}_7$, 343 (7), 330 (19), 329 (100), 311 (7), 301 (9), 286 (5), 197 (6), 169 (5), 105 (12), 77 (8).

Methylation of 1. Methylation of 1 with methyl iodide gave 3, which was purified on Si gel TLC (C_6H_6 –EtOAc, 6:4; R_f 0.52). UV λ_{max} nm (log ϵ): 309 (4.23), 267 (4.43). IR (KBr) cm^{-1} : 2945, 2845, 1640, 1590, 1460, 1410, 1360, 1270, 1230, 1210, 1175, 1050, 1000. ^1H NMR (250 MHz, CDCl_3 , TMS): δ 8.15–8.09 ppm (2 H, m), 7.54–7.46 (3 H, m), 4.09 (3 H, s), 3.98 (3 H, s), 3.96 (3 H, s), 3.94 (3 H, s), 3.87 (3 H, s). MS (MAT 312–GC/MS, 70 eV): $m/e > m/e 70$ (% > 10%) = 372 (53, M^+), 371 (31), 358 (23), 357 (100), 353 (11), 341 (12), 314 (10), 313 (14), 197 (ca 10), 105 (ca 10).

Preparation of di-(trideuteromethyl) ether 4. 4 was prepared using trideuteromethyl iodide as methylating agent. ^1H NMR (250 MHz, CDCl_3 , TMS): δ 8.15–8.09 ppm (2 H, m), 7.54–7.46 (3 H, m), 3.97 (3 H, s), 3.92 (3 H, s), 3.86 (3 H, s). $\text{M}^+ = m/e 378$.

Methylation of 1 with diazomethane. To a soln of 1.2 mg 1 in MeOH , 1–2 drops of ethereal diazomethane were added at room temp. After 10 min the soln was evapd. and the residue purified on TLC Si gel (C_6H_6 –EtOAc, 6:4; R_f 0.39). ^1H NMR (250 MHz, CDCl_3 , TMS): δ 12.35 ppm (1 H, br. s), 8.21–8.08 (2 H, m),

7.65–7.48 (3 H, m), 4.09 (3 H, s), 3.94 (6 H, s), 3.85 (3 H, s). MS (MAT 312 GC/MS, 70 eV): $m/e > m/e 70$ (% > 10%) = 358 (67, M^+), 357 (12), 344 (22), 343 (100), 327 (10), 105 (ca 22), 77 (ca 19).

Acknowledgements. This work was supported by a Colciencias Grant (008-1-07-75) and the Universidad Javeriana. We are also indebted to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

REFERENCES

1. Escarria, S. and Torrenegra, R. D. (1977) *Phytochemistry* **16**, 1618.
2. Torrenegra, R. D., Escarria, S., Bogota, C. and Achenbach, H. (1979) *Rev. Latinoam. Quim.* **10**, 83.
3. García, B. H. (1975) *Flora Medicinal de Colombia*, Vol. III, p. 351. Instituto de Ciencias Naturales, Universidad Nal. Bogota.
4. Hänsel, R., Rimpler, H. and Schwarz, R. (1967) *Tetrahedron Letters* 735.
5. Hänsel, R. and Cubukcu, B. (1972) *Phytochemistry* **11**, 2632.
6. Rondeau, R. E. and Sievers, R. E. (1971) *J. Am. Chem. Soc.* **93**, 1522.
7. Okigawa, M., Kawano, N., Rahman, W. and Dhar, M. M. (1972) *Tetrahedron Letters* 4125.
8. Okigawa, M. and Kawano, N. (1973) *Chem. Ind.* 850.
9. Okigawa, M., Khan, N. U., Kawano, N. and Rahman, W. (1975) *J. Chem. Soc. Perkin Trans 1*, 1563.
10. Wilson, R. G., Bowie, J. H. and Williams, D. H. (1968) *Tetrahedron* **24**, 1407.